Lessons from 100 years of hypoxia research for future radiobiology

WHN

Brad Wouters, PhD | **D** @bradwouters Executive Vice President, Science and Research University Health Network

Hypoxia Radiobiology

5 conceptual observations have shaped the field

1) 1909 - Hypoxia causes radiation resistance

2) 1955-Hypoxia is present in human tumors

HISTOLOGICAL STRUCTURE OF LUNG CANCERS 541

Fig. 6-10.—Dimensions of tumour cord R, central necrosis r, and region of tumour which has not yet become necroits $(R \to r)$. The dimensions (in microsa) are those seen in sections of and coin. Also: Radius R of instructions and coin. Also: Radius R of instructions are the section of the matrix and coin. Also: Radius R of instructions are the section of tumour (R $\to r)$. \oplus Tumour (curve T). \bigcirc central necrosis curve N). Fig. 6 case 516(25): Fig. 7 case 4127(54): Fig. 8 case 4084(53): Fig. 0 case 889(53); Fig. 10 case 889(53); different region of the same tumour as Fig. 9.

Thomlinson and Gray Br J Cancer. Dec 1955; 9(4): 539–549.

Chronic hypoxia (diffusion limited)

Acute hypoxia (perfusion limited)

3) 1986-Hypoxic cells can be targeted

Zeeman, Brown, Lemon, Hirst, Lee Int J Radiat Oncol Biol Phys. 1986 Jul;12(7):1239-42.

4) 1988- Hypoxia influences tumor biology

a b KHT Fibrosarcoma **BIGFIO Melanoma** D 150 130 Mean number of metastases 110 90 70 1.0 50 0.6 30 10 6 12 18 24 48 12 18 24 48 Oxic 0 Oxic 0 6 Duration of oxic recovery(hr) Duration of oxic recovery(hr)

Metastasis

Genetic instability

Young and Hill Proc Natl Acad Sci U S A. Dec 1988; 85(24): 9533–9537

Hypoxia drives phenotypic diversity

Angiogenesis Metabolism DNA Repair Metastasis Stemness

5) 1996-Mutations influence hypoxia tolerance

Graeber, Giaccia Nature 379, 88 - 91

Why has this not had a bigger clinical impact?

Need for personalization

The most important and interesting aspect of tumour hypoxia is its variation across patients

1) We don't understand what causes the different patterns of hypoxia from patient to patient

2) We don't base therapeutic approaches to hypoxia on any patient specific feature

Determinants of tumour hypoxia – oxygen delivery/vasculature

Tumour hypoxia is about more than delivery

Courtesy of Bert van der Kogel

Oxygen metabolism and hypoxia tolerance influence tumor hypoxia

Oxygen delivery/demand

Angiogenesis/perfusion
Oxygen metabolism

Analysis of oxygen metabolism and hypoxia tolerance in patient derived samples given orally before surgery UHN Establishing organoid models of PDAC Resected Surgical sample Implant Primary Measure hypoxia primary Tumor scores from PDX tumor Tumor Hypoxia Level Resected PDX Tumor Dissociation Culture in Matrigel Orthotopic xenograf Multiple passages **Oxygen Demand** in vitro measurements Hypoxia Tolerance

How does oxygen metabolism and hypoxia tolerance drive variation in hypoxia across patients?

PDOs exhibit a wide range of metabolic phenotypes

Metabolic subtypes in PDAC

High range of hypoxia tolerance in PDO

48hr 1% oxygen

High range of hypoxia tolerance in PDO

48hr 0.2% oxygen

Correlation between hypoxia tolerance and basal OCR

Metabolic and hypoxic phenotypes captured in vivo

Analysis pipeline - live/dead

- Cell segmentation on DAPI using StarDist deep learning
- Live/dead cells identified using an object classifier trained from manually annotated images

Hoechst DAPI CD31 PIMO

Live Dead

Analysis pipeline – stroma/tumour

 Epithelia (tumour) and stroma regions distinguished using an object classifier based on pathologist annotated images.

HE

DAPI CD31 PIMO EdU

Delivery - Vessel detection and perfusion

DAPI CD31 PIMO EdU

Hoechst DAPI CD31 PIMO EdU

Perfusion metrics - example

Hypoxia spatial metrics

• Distance to centroid of the nearest perfused vessel was calculated for each cell.

Heatmap	Scale	(µm)
---------	-------	------

0.00

200.00

Distance map

Spatial gradients in hypoxia and proliferation

Metabolic and hypoxic phenotypes captured in vivo

Category	Parameters
Individual cell classification	Live/dead (%Necrosis) Epithelial/stroma
Single-channel analysis	Hypoxic fraction (PIMO+ cells) Proliferative fraction(Edu+ cells)
Perfusion	CD31+ vessel density Perfused vessel density (per tumour area) Perfused vessel count (% of total) Perfused vessel area (% of total)
Spatial gradients based on distance metrics to perfused vessels	Cell density gradients Oxygen gradient (oxygen consumption) Pimo intensity gradients (tolerance) Acute hypoxia Proliferation gradients

Do *in vitro* phenotypes drive *in vivo* hypoxia?

Do in vitro phenotypes drive in vivo hypoxia?

058 – High OCR 023 – Low OCR 058 – High hypoxia tolerance 023 – Low hypoxia tolerance

In vitro OCR and hypoxia tolerance correlate with oxygen gradients and oxygen levels in vivo

023 Low OCR Low tolerance

What are the underlying molecular determinants of oxygen metabolism and hypoxia tolerance?

Transcriptional subtypes in PDAC organoids

PDOs transcriptional subtypes associate with oxygen metabolism

Personalized targeting of hypoxia

Lessons

- Key biological properties that impact radiation response are highly tumour specific
 - All approaches to change RT schedules, combinations will have differential effects on patients
- Therapeutic approaches must be developed in concert with patient selection
 - Treatment strategy addresses both causes and consequences of hypoxia at the patient level
- Understanding the contributors to patient variation in tumor biology are needed to inform future radiation treatment
 - Protons, ions, dose/fx, SBRT, drug combinations

Acknowledgements

- Ji Zhang
- Mark Zaidi
- Phoebe Lombard
- Anna Dvorkin-Gheva
- Dan Cojocari
- Elisabeth Liedtke
- Samantha Brazier
- Rob Cairns
- Trevor McKee
- Stephen Chung

- Marianne Koritzinsky
- Faiyaz Notta
- David Hedley, Nisha Dhani
- Steve Gallinger, Jennifer Knox
- Ming Tsao, Nikolina Radulovich

